Iranian Scientists Discover New Electrical Device for Rapid Diagnosis of Cancer - Islamic Invitation Turkey
IranTechnology

Iranian Scientists Discover New Electrical Device for Rapid Diagnosis of Cancer

13920921000103_PhotoIIranian researchers from University of Tehran and Shahid Beheshti University developed a novel method based on new physics for quick diagnosis of cancer in tissue cells at single-cell resolution.
To this end, the researchers succeeded in the discovery of a new piece based on novel electrical mechanism to electrically analyze cells, and its application in cancer diagnosis with high accuracy.

One of the researchers, Dr. Mohajerzadeh, explained about the procedure of the research. “We produced a sensor based on carbon nanotubes to detect the level of metastasis cancerous single-cell comparing to healthier cells only through direct extraction of cell membrane impedance signal with carbon nanotubes. The system introduces new physics in the diagnosis of cancer, and it also includes a new piece with the ability to become clinical in medical experiments. The structure was designed and produced under the title ‘electrical endoscope of cancerous single-cell based on carbon nanotubes’. We succeeded in detecting reduction in electrical impedance in the cells with higher cancerous levels in comparison to the cells with lower cancerous levels at single-cell resolution.”

The important point in this research is the simultaneous discovery of a new piece based on a novel electrical mechanism to electrically analyze cells and its application in the diagnosis of cancer with high accuracy. The plan has the ability to substitute complicated and expensive pathologic test. At the same time, the accuracy of the plan enables it to be used in diagnosis purposes both in the number of tested cells and in the detection of middle grades of cancerous cells, which many of medical tests are not able to do it. Moreover, it has applications in studying various living cells and the effects of environmental stresses, drugs, and waves on them through the analysis of electrical signals in their membranes.

A part of the research is at patent pending condition in USPTO and the new results will be filed in USPTO soon. The recent results of the research have been published in Nanoscale, vol. 8, 2013, pp. 3421-3427.

Back to top button